今日の授業のひと工夫(小中学校)

中学校

2023.02.03

【3年7章】
長方形の辺の長さの比とピタゴラス数

3年7章p.204問1では、△ABFや△EDFに着目すると、長方形の辺の長さの比とピタゴラス数との関係を見つけることができます。

【今日の授業のひと工夫】【3年7章】長方形の辺の長さの比とピタゴラス数01
▲新しい数学3 p.204

問1では、長方形ABCDの辺の縦と横の長さの比が1:2になっていますね。このとき、△ABFは辺の長さが、AF=3cm、AB=4cm、BF=5cmとなり、3:4:5の直角三角形になっています。

それでは、長方形の縦と横の長さの比が2:3のとき△ABFはどんな三角形でしょうか。AB=12cm、AD=18cmとして計算すると、AF=5cm、BF=13cmとなり、△ABFは5:12:13の直角三角形になります。さらに、縦と横の長さの比が1:4のときは、15:8:17の直角三角形になります。

【今日の授業のひと工夫】【3年7章】長方形の辺の長さの比とピタゴラス数02

この長方形の縦と横の長さの比が自然数の比であれば、△ABFは3辺の比に必ずピタゴラス数が現れるのでしょうか。

AB=\(n\) 、AD=\(m\)として考えてみましょう。AF=\(x\) として同じように計算すると

AF=\(\dfrac{(m^{2}-n^{2})}{2m}\) 、AB=\(n\) 、BF=\(\dfrac{(m^{2}+n^{2})}{2m}\)

となります。
AF、AB、BFにそれぞれ \(2m\) をかけると

\(m^{2}-n^{2}\)、\(2mn\)、\(m^{2}+n^{2}\)

となり、以前の記事で紹介した「ピタゴラス数を見つけてみよう」と同じ式が出てくることがわかります。

【今日の授業のひと工夫】【3年7章】長方形の辺の長さの比とピタゴラス数03

問1で3、4、5の直角三角形が出てきたのは、偶然ではなかったことがわかりますね。直角三角形の比に着目した生徒がいたら、授業で取り上げてみてください。

関連記事はこちら

>【3年7章】ピタゴラス数を見つけてみよう

その他のコンテンツ